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Rapid development of renewable energy sources, particularly solar photovoltaics (PV), is critical to 
mitigate climate change. As a result, India has set ambitious goals to install 500 gigawatts of solar 
energy capacity by 2030. Given the large footprint projected to meet renewables energy targets, 
the potential for land use conflicts over environmental values is high. To expedite development of 
solar energy, land use planners will need access to up-to-date and accurate geo-spatial information 
of PV infrastructure. In this work, we developed a spatially explicit machine learning model to map 
utility-scale solar projects across India using freely available satellite imagery with a mean accuracy 
of 92%. Our model predictions were validated by human experts to obtain a dataset of 1363 solar PV 
farms. Using this dataset, we measure the solar footprint across India and quantified the degree of 
landcover modification associated with the development of PV infrastructure. Our analysis indicates 
that over 74% of solar development In India was built on landcover types that have natural ecosystem 
preservation, or agricultural value.

Background & Summary
India is rapidly expanding its deployment of clean energy1. The dual benefits of climate mitigation potential, and 
lower cost of production, make renewable energy cost-competitive compared to coal and other conventional 
energy sources. Therefore, to achieve the nationally determined contribution (NDC) targets such as: 40% share 
of non-fossil fuel cumulative power generation capacity, and to halt greenhouse gasses (GHGs) emission from 
fossil fuels, India has committed to 500 gigawatts (GW) of installed renewable energy capacity by 20302. India 
intends to reach 225 GW of renewable power capacity by 2022 exceeding the target of 175 GW pledged during 
the Paris Agreement. As of 2018 India ranks fifth in installed renewable energy capacity with the fourth most 
attractive renewable energy market in the world.

Solar energy is expected to play an increasingly larger role in India’s clean energy transition. Of the 2030 
(500 GW) target by 2030, solar energy is expected to contribute 300 GW3. Over the last five years, the installed 
capacity for solar energy has increased more than five-folds4. Of the total renewable energy (RE) capacity added 
during this period, more than two-thirds has come from utility-scale solar photovoltaic. Solar energy companies 
in India project the same trend to continue over the next five years with utility-scale solar energy expected to add 
39 GW of the 60 GW of installed RE capacity5.

Despite the policy commitments in India, many studies have questioned the land-based targets for solar 
energy deployment and have highlighted the difficulties related to disputes over land use6,7. Renewable energy 
requires a large amount of space8. If these energy installations aren’t sited carefully, they can cause significant 
damage to wildlife, natural habitats and critical ecosystem services and even generate greenhouse gas emissions 
that reduce their climate benefits9. Despite the recognition of these challenges policy makers and governments 
have struggled to maintain robust geospatial information on the rapid expansion of renewable energy technolo-
gies. Access to these data will be critical to assess past impacts and planning to avoid future conflicts.

At present, there is limited information that is compiled and publicly available on the location of utility-scale 
solar photovoltaic projects across the country. Most location information for a project is typically limited to its 
associated jurisdictional boundary. The lack of more specific information, such as project boundaries, makes it 
difficult to identify factors that may be driving land suitability for such projects, and thus deprive policy-makers 
of the relevant information to expedite development. In addition, without such information, it is difficult to 
understand the nature of land-use changes driven by solar energy in India. This is particularly significant as some 
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land-use changes from solar development (e.g., from biodiversity-rich habitats, or those places that are impor-
tant for agriculture or pasture lands for local grazing-dependent communities) may lead to socio-ecological land 
conflicts and ultimately slow the transition to renewable energy. While some of the facility-level location infor-
mation is collected by government agencies during project-level planning and construction phases, this infor-
mation is not typically made publicly available. Other datasets that are publicly available, i.e. OpenStreetMap, 
usually do not capture the full range of development given sampling biases of these crowd sourcing approaches. 
Fortunately, freely available high-resolution remotely sensed imagery and new artificial intelligence techniques 
make it possible to now map utility-scale projects10–13.

We present the first country-wide database of solar photovoltaic farms for the country of India and show 
that it is feasible to also detect when the solar farms were created – allowing for further land use and sustainable 
development analysis. Our contributions are twofold:

 1. A novel methodology for creating datasets of remotely sensed objects using satellite imagery when labeled 
data available is limited. This new method consists of a semantic segmentation model trained in stages 
using human-machine interaction and hard negative mining (HNM).

 2. The quantification of land cover change associated with solar energy development in India. This analysis 
can inform policy makers to develop policies ensuring renewable energy is developed in low conflict areas.

Materials and Methods
Datasets are often created using human experts of crowdsourced labelers. However, there are use cases, like 
detecting small objects on the surface of the earth, where this task is costly, time consuming, and unscalable. 
When sufficient labeled data is available, machine learning models tend to be helpful reducing the time required 
to accomplish this task. Here we present a methodology for creating datasets of remotely sensed objects using 
satellite imagery when labeled data available is limited. To develop our map of utility-scale solar arrays across 
India first we assembled point labels of known solar PV farms and used human-machine interaction for a user 
to finetune an unsupervised model to create weak segmentation labels, labels obtained through weakly super-
vised learning14, of the solar farms. Then we paired these weak pixel-wise segmentation labels with geo-located 
Sentinel 2 imagery to train a supervised segmentation neural network and further improved in multiple stages of 
Hard Negative Mining (HNM). Finally, we estimated when solar PV installations were constructed and assessed 
the land use prior to construction for each array. Finally human experts validated the output of the AI model 
and individual solar arrays were clustered into solar farms using distance-based clustering. Figure 1 describes 
the proposed methodology.

Solar farms point labels dataset. We used a set of 117 geo-referenced point labels corresponding to the 
center point of different solar installations for the states of Madhya Pradesh (45-point labels) and Maharashtra 
(72-point labels) in India to train our initial solar mapping model. We also obtained 191 noisy solar installations 
point labels for four other Indian states including Kerala (15), Telangana (28), Karnataka (73), Andhra Pradesh 
(75). The noisy points labels did not accurately match the exact solar installation location. These labels were 
obtained using previously mapped solar farms through OSM and other Nature of Conservancy (TNC) partners.

Sentinel 2 (S2) satellite imagery. The Sentinel-2 program developed by the European Space Agency 
(ESA) provides global imagery in thirteen spectral bands at 10 m–60 m spatial resolution and a revisit time of 
approximately five days free of cost. In this work, we use 12 of the available spectral bands while excluding S2 
Band 10 which is used mostly to mask out clouds since cloudy scenes were filtered out as the input to the solar 
mapping model.

Copernicus Global Land Cover. The Dynamic Land Cover map at 100 m resolution (CGLS-LC100) from 
Copernicus provides global land cover map at 100 m spatial resolution for the period 2015–2019 over the entire 
Globe, derived from the PROBA-V 100 m time-series. The product also includes all basic land cover classes 
including shrubs, herbaceous vegetation, cultivated and managed vegetation/agriculture, urban/built up, bare/
sparse vegetation, snow and ice, permanent water bodies, and more.

NRSC Land Use Land Cover. Land Use Land Cover (LULC) maps for the country of India generated by 
the National Remote Sensing Centre (NRSC) at the Indian Space Research Organization15. Annual land use/land 
cover mapping is carried out at 1:250k scale and is made available at approximately 60 m/px resolution. Figure 6 
shows a snapshot of the Land Use Land Cover data for the year 2017 at a 50 m/px resolution along a legend for 
the classes covered. This data along the Copernicus Global Land Cover is used for the land cover change analysis.

Semi-supervised label generation: from point labels to semantic annotations. Finding solar installations from 
satellite imagery can be formulated as a semantic segmentation computer vision task. The goal of semantic 
image segmentation is to label each pixel of an image with a corresponding class of what is being represented16. 
However, pixel-wise labels are required for semantic segmentation17. Manually creating segmentation labels is 
costly and time consuming. This problem exacerbates while working with noisy point labels with non-systematic 
displacements errors. To overcome this limitation and generate semantic labels at scale we first pre-trained a 
convolutional neural network to cluster pixels from Sentinel 2 satellite imagery by color in an unsupervised 
manner. We used an interactive web application similar to the one proposed by Robinson et al.18 to quickly 
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fine-tune the network to cluster pixels corresponding to solar installations into a single solar installation class as 
shown in Fig. 2. This fine-tuned model is then used to obtain noisy semantic labels for all available point labels 
as shown in Fig. 2 parts D and E. The pixel-wise labels obtained make it possible to create a small semantic seg-
mentation dataset suitable to train supervised semantic segmentation models.

Weak labels solar PV installations segmentation dataset. Following the described semi-supervised 
semantic label generation approach applied to the solar farms point labels dataset for all states but Maharashtra, 
we generated an initial segmentation dataset consisting of 234 Sentinel 2 image patches of size 256 × 256 con-
taining solar PV installations and corresponding pixel-wise labels for the classes “background” (0) and “solar 
PV installation” (1) and 50 pairs of randomly sampled images patches without solar installations with the cor-
responding pixel-wise labels. The dataset was split into training (80%), validation (10%), and test (10%) disjoint 
sets.

Fig. 1 Proposed solar PV mapping pipeline. Given a small set of point labels and its corresponding Sentinel 2 
imagery, pixels are clustered into multiple clusters (64 for our experiments). These clusters are merge into a user 
defined smaller set of classes (three in this example) using a linear classifier. Cluster merge results are shown in 
a web tool where a human user provides feedback on which pixels belong to the solar farms class or to the other 
background classes and the linear classifier if finetuned based on the feedback from the user. This weakly supervised 
segmentation process is represented at the top of this figure and is interactively performed to obtain weak semantic 
labels like the example shown at the top right of the figure. These labels paired with the corresponding geo-located 
Sentinel 2 image are used to create a semantic segmentation dataset suitable for supervised training of a solar farm 
semantic segmentation model. The obtained segmentation neural network can be used to perform inference for 
solar farms in novel scenes as shown at the bottom of the figure. False positive predictions are considered hard 
negatives and are used to augment the training dataset and finetune the supervised segmentation neural network 
improving its false positive rate. This process of performing inference in novel scenes, adding hard negative to the 
training set and finetuning the supervised model further can be repeated multiple times until the performance of 
the results is good enough for large scale inference.

Fig. 2 Human-Machine interaction for unsupervised semantic label generation pipeline. (A) Use point labels 
to find features, (B) Initial unsupervised model will segment imagery at pixel level by color, (C) Fine-tuning 
to segment solar farms (yellow) vs other (blue, grey), (D) Apply the fine-tuned model to generate weak pixel-
wise labels (E) Download labels generated in D as GeoTIFFs to incorporate into a solar installation semantic 
segmentation dataset of noisy semantic labels.
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Pristine labels solar PV farms test set. The 72 locations with known solar farms from the point label 
dataset from Maharashtra, we manually labeled the outlines of the solar farms. These polygons along with cor-
responding Sentinel 2 imagery constitute what we call the pristine labels solar PV farms and were reserved for 
testing the models.

Supervised semantic segmentation of solar farms. Now we formalize our solar farms mapping approach. Let 
(xn)N represent a set of training Sentinel 2 satellite image patches. Each image patch xn is associated with a cor-
responding pixel-wise semantic segmentation mask. For each pixel (i, j) in the image patch xn we aim to assign 
a label ln = 1 when the pixel belongs to a solar installation and ln = 0 otherwise. For the segmentation of solar 
installations, we trained several U-Net models19 with different depths and number of input filters on the solar 
PV installations segmentation training set. We used the Adam optimizer20 with a batch size of 32 to train all our 
models. All neural network models were trained from randomly initialized weights using a learning rate (LR) of 
0.001 (The LR hyperparameter controls how much the model weights change in response to the estimated error 
each time the model weights are updated) for 50 epochs (i.e., we showed the neural network all training samples 
50 times). We decay the learning rate by 10% after 5 epochs of no performance improvement in the validation 
set. Weighted binary cross-entropy was used as the loss function. The model architecture with best performance 
in the validation set was selected for the rest of the experiments.

Fig. 3 Example predictions. Examples of correct solar farm predictions from our model for different areas in 
India. Our model accurately outlines solar farms across different areas and backgrounds.

Fig. 4 Predictions over time. Solar farms predictions across time for sentinel imagery median composites 
for the years 2016, 2017, 2018, 2019, 2020. These predictions allow the Pearson correlation analysis between 
Karnataka solar install capacity and model predictions.
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Hard Negative Mining (HNM). The previously described dataset contains “easy” background examples 
obtained from a random sampling procedure. Models trained on the created dataset will see far more “easy” neg-
ative samples from background regions than difficult negative samples from areas similar in appearance, shape, 
or spectral signature solar PV installations. It has been shown that some form of hard negative mining is useful 
to improve the performance of object detectors21,22. In this work, we adopt a bootstrapping23 approach where we 
train an initial model and test it by doing inference across different new sentinel image tiles. Inference results were 
visually inspected for false positive predictions. These false positive predictions represent “hard negative sam-
ples” and were added to the train set of the solar PV segmentation dataset. The segmentation model can now be 
re-trained using the new training set for better performance. The HNM procedure can be repeated multiple times.

Predictions post-processing. We incorporated OpenStreetMap24 data to remove false positive predictions 
over road areas. We also used the Normalized Difference Snow Index (NDSI)25 and the Normalized Difference 
Water Index (NDWI)26 to remove false positive predictions around snow and water bodies, respectively.

Solar farms initial development. We use Microsoft’s Planetary Computer to query all available Sentinel 2 
cloud-free imagery between 2015 and December of 2020 matching the outline of each of the predicted solar 
PV farms. We apply Temporal Cluster Matching (TCM), an algorithm for detecting changes in time series of 
remotely sensed imagery when footprint labels are only available for a single point in time27, to the Sentinel 2 
imagery time series obtain from the planetary computer to identify when the detected solar farms from 2020 
were first built using Sentinel 2 temporal. Figure 10 shows the KL divergence for all scenes in the S2 imagery 
time series used as input for the solar farm shown in Fig. 9. The black horizontal line represents the median 
of the KL divergence values. The median KL divergence is used as threshold to determine the scene of initial 
development. TCM successfully predicts scene 41 as the scene in which the initial development of the solar farm 
is first observed. TCM was used to estimate the year of development for each solar farm in the released dataset. 
Scene 41 along with scenes pre and post development are shown on Fig. 9 along with the dates the scene was 
collected and the TCM computed KL divergence values. The estimated year of development is included for each 
solar farm in the released dataset. Note: Microsoft’s Planetary Computer is freely available at https://planetary-
computer.microsoft.com/.

Weak labels solar PV installations test set

Model IoU (%) Mean Acc (%) Pix Recall (%) Pix Precision (%)

U-Net Model 59.79 85.81 75.80 73.67

U-Net Model + HNM 59.52 86.39 73.45 75.08

U-Net Model + 2HNM 60.29 89.03 70.88 78.35

Model + 2HNM + Post 68.87 94.76 70.72 84.63

Table 1. Performance of proposed model in held out test set of weak labels solar PV segmentation dataset.

Pristine Labels Test Set

Model IoU (%) Mean Acc (%) Pix Recall (%) Pix Precision (%) Recall (%)

U-Net Model + 2HNM 80.67 95.62 86.59 91.03 94.4

Table 2. Performance of proposed model in held out test set of pristine labels.

Fig. 5 Pearson correlation between total area solar farms across time predicted by our model for the state of 
Karnataka and the solar install capacity in Thousand BTU’s per hour units (MB).
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Land cover change analysis. The year of initial development obtained using TCM, along with the Copernicus 
annual Global Land Cover from 2015 to 2019 and the NRSC Land Use Land Cover data from 2017 previously 
described, facilitates the study on environmental and socio-economic implications of solar photovoltaic energy 
development by analyzing which landcover classes are being impacted by solar farms. Figure 7 shows Sentinel 
2 imagery before the detected solar installation was built (2016) and after it was built (2020) along with the cor-
responding landcover from Copernicus annual Global Land Cover to illustrate how it can be informative of the 
type of landcover being impacted by the installation of the solar PV farms.

Data Records
Our solar farms dataset is stored in vector data form for the use of the community. The final dataset includes 1363 
validated and grouped solar PV installations. We provide the vector data in the form of polygons or multi-polygons 
outlining the solar farms and center points with the geo-coordinates for the center of each installation in a file 
named “https://github.com/microsoft/solar-farms-mapping/blob/main/data/solar_farms_india_2021.geojson”.

The dataset includes the following variables:

•	 fid: Unique identifier for a solar farm. It is shared by polygons belonging to the same farm.
•	 Area: The area of the site in squared meters (m2).
•	 Latitude: Latitude corresponding to the center point of the solar installation.
•	 Longitude: Longitude corresponding to the center point of the solar installation.
•	 State: Indian State where the solar PV installation is located at.

The raw data format can also be found at Zenodo at: https://zenodo.org/record/5842519#.Yn7UT_iZND9 
under Creative Commons Attribution 4.0 International license28.

Technical Validation
Table 1 shows the performance of our model using the test set from our Solar PV installations segmentation 
dataset described in the previous section. We can observe how pixel-wise intersection over the union (IoU), 
mean pixel accuracy, and pixel-wise precision (rate of correct pixel predictions among all positive pixel predic-
tions) improve by retraining the model with hard negative samples while pixel-wise recall (rate of correct pixel 
predictions among all pixels corresponding to a solar PV installation) decreases slightly as hard negative mining 
forces the model to be more conservative. Object-wise metrics like farm-wise recall (rate of correct solar-farm 
detections among all solar PV farms) better describe the performance of the model for this task since missing 
certain solar farm pixels have no practical effect in being able to detect the solar installation. Pixel-wise metrics 
are also more susceptible to being affected by the noisy nature of the dataset.

Table 2 shows the performance of our model in the small pristine solar PV test set of manually labeled solar 
farms. Our best model shows 80.7% intersection over the union and mean pixel accuracy of 95.6%, a pixel-wise 
precision of 91%, a pixel-wise recall of 86.6% and a farm-wise Recall of 94.4% before post-processing. This 

Time Solar Installation Capacity (MBH)

March 2016 147

March 2017 1039

March 2018 4960

March 2019 5944

March 2020 7046

Table 3. Karnataka state solar installation capacity.

Previous Landcover Class Landcover Percentage (%)

Build Up 0.15%

Kharif Only 12.18%

Rabi Only 18.49%

Zaid Only 7.97%

Double/Triple 0.00%

Current Fallow 11.50%

Plantation/Orchard 28.95%

Evergreen Forest 3.98%

Deciduous Forest 0.08%

Scrub/ Deg. Forest 1.88%

Littoral Swamp 1.05%

Wasteland 0.68%

Scrubland 12.71%

Table 4. Solar Farms Landcover Change Analysis using NRSC Land Use Land Cover data.
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indicates that lower pixel-wise performance in the weak labels solar PV installations dataset might be due to the 
noise in the ground truth.

For qualitative results, Fig. 3 shows sample predictions from our model for a diverse set of image patches at 
different scales and under different background conditions. It shows robust segmentation performance across 
different locations. Figure 4 shows predictions over time for a single solar farm. It shows consistent performance 
in different imaging conditions.

Pearson correlation analysis of historical solar install capacity and temporal model predic-
tions. The state of Karnataka in India provides information about the installed solar photovoltaic installed 
capacity since 2016 as shown in Table 3. We obtain annual Sentinel 2 median composites using all available scenes 
with under 3% cloud coverage obtained between January and May for the years 2016–2020 covering the entire 
state of Karnataka. For the years 2016, 2017, and 2018 surface reflectance Sentinel products were not available. To 

Fig. 6 Landcover data at 50 m/px spatial resolution for the country of India for the year 2017. Note: The 
boundaries of India shown here are neither authenticated nor verified and are not to scale. They are only meant 
for graphical representation. All efforts have been made to make them accurate, however, neither Microsoft nor 
TNC own any responsibility for the correctness or authenticity of the same.
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alleviate this covariate shift, we perform tile-wise histogram matching29 from Top of Atmosphere (ToA) Sentinel 
2 median composites to the 2020 tiles surface reflectance Sentinel 2 median composites of the same area.

To further study the performance of our model, we conducted a Pearson correlation coefficient analysis 
between installed solar capacity and the predicted total solar installation area for the state of Karnataka in India. 
To do this, we run inference for the different median composite Sentinel 2 imagery after histogram matching29. 
Model predictions were polygonised and used to estimate the area of individual predictions. The total solar farm 
area predicted by our model is used to make a correlation analysis with the solar install capacity presented in 
Table 3.

Figure 5 shows the Pearson correlation between total area of solar farms across time predicted by our model 
for the state of Karnataka and the total installed solar capacity in Thousand BTU’s per Hour (MB). The Pearson 
correlation coefficient is 0.957 indicating a very strong relationship between our model predictions and the solar 
install capacity released by the Indian state of Karnataka. The coefficient of determination (R2) or proportion of 
the variance of solar install capacity explained by our model predictions is 91.57%.

Land cover land use change analysis results. Table 4 shows the percentage of each land cover class con-
verted by solar PV installations across India. Over 74% of the solar farms installations in India were built on land 
cover types that could create potential biodiversity and food security conflicts - 67.6% of agricultural land and 
6.99% of natural habitat - of which 38.6% of agricultural land may have potential to cultivate seasonal crops includ-
ing Kharif (Kharif crops, or monsoon crops are domesticated plants that are cultivated and harvested during the 
Indian subcontinent’s monsoon season), Rabi (Rabi crops are agricultural crops that are sown in winter and har-
vested in the spring), and Zaid (Zaid crops are summer season crops), and 28.95% of land with plantation crop/

Fig. 7 Sentinel 2 imagery before the detected solar installation was built (2016) and after it was built (2020) 
along with the corresponding landcover low resolution information. This information can be used to estimate 
how landcover changed to support the building of solar installations at scale. Note that solar PV installation is 
not a land cover type covered on this dataset.

Fig. 8 Examples of false positive predictions. The most common false positive predictions from our solar 
mapping model include electric plants (middle), construction sites (right), and seldom parking lots.
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orchards. The natural land cover types included sensitive ecosystems such as evergreen, deciduous, and littoral 
swamp forest with potential biodiversity value. However, our results are sensitive to data limitation. Because, as 
we strictly restricted our model threshold to reduce false positive solar areas, we were only able to map ~20% of 
currently installed utility-scale solar projects across India. Therefore, our results and interpretation of land use of 
impact of PV installations can change as and when future studies are able to map entire utility scale solar projects 
across India.

Manual data validation. To check the accuracy of our model predictions we performed a manual validation 
process. We overlaid our final model predictions after post-processing for the entire country of India on several 
base map layers inside QGIS and Google Earth software applications. We added Esri and Google Maps Satellite 
imagery in QGIS as a base map. We zoomed to each solar farm record and visually evaluated the overlay to tag the 
record either as a valid farm or invalid prediction or roof top (our model often mapped roof top solar farms as well). 
Figure 3 show multiple examples of valid solar farms predictions. Figure 8 show examples of invalid (A, C) and roof 
top solar predictions (B, D, E). We also cross-checked this by using historical high-resolution imagery available 
from Google Earth Pro’s “Show historical imagery” feature. In some cases where the use of satellite imagery was 
not conclusive enough, we also conducted Internet searches to identify reports or news about the presence of solar 
farms in each area. For example, public reports were used to validate the solar farm footprint for Rewa Solar power 
plant in Madhya Pradesh since part of the solar footprint was not current in the base maps used for reference.

Cross India solar photovoltaics farms database generation. Most solar PV farms include tens of 
thousands of solar panels arranged in a non-contiguous way. Hence, our model would predict multiple independ-
ent polygons. The 4421 manually validated valid predictions from the previous analysis were spatially clustered 
based on a distance metric into multi-polygons to obtain 1363 individual solar PV farms. Table 5 shows the 
manual validation results. 92.54% of model predictions correspond to valid solar farms (85.27%) or roof top solar 
(7.27%) with only 7.46% of the predictions corresponding to invalid farms. Figure 11 shows center point locations 
for all predicted and validated solar farms in India across all states.

Usage Notes
Solar energy is projected to be the major contributor to the renewable energy capacity addition in India and 
across the globe in the next couple of decades. Rapid deployment of renewable energy is critical to avoid the dis-
astrous impacts of climate change. Using the power of artificial intelligence, we have developed a spatially explicit 
semantic segmentation model using noisy pixel-wise labels and hard negative mining to map utility-scale solar 

Category # of Records Perc. Contribution

Valid Farms 4421 85.27%

Roof Top Solar 387 7.27%

Invalid Farms 377 7.46%

Total 5185 100.00%

Table 5. Global Performance Assessment Results.

Fig. 9 Set of sample scenes of cloud free Sentinel 2 imagery from time series for a predicted solar farm used as 
input to the Temporal Cluster Matching algorithm.
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projects across India with a mean identification accuracy of 92%. Application of this model across the globe 
can help identify factors driving land suitability for solar projects and help public agencies plan better to facil-
itate solar energy development apart from helping track progress on solar energy developed. In addition, by 
mapping spatial patterns of solar development we can better understand land-use changes that may be driven 

Fig. 11 Solar PV Installations Mapping Results. Map showing outlines of solar farms detected by our model. 
Note: The boundaries of India shown here are neither authenticated nor verified and are not to scale. They are 
only meant for graphical representation. All efforts have been made to make them accurate, however, neither 
Microsoft nor TNC own any responsibility for the correctness or authenticity of the same.

Fig. 10 KL Divergence TCM corresponding to the time series imagery used on Fig. 9. TCM successfully 
predicted scene 41 as the scene in which the initial development of the solar farm is first observed.
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by utility-scale projects. Empowering stakeholders which such information will catalyze rapid development of 
renewable energy while ensuring limited impacts to local communities and natural ecosystems in the process.

Different approaches have been previously proposed for automatic detection of PV arrays from very 
high-resolution satellite imagery using machine learning10–12. These approaches often rely on high resolution 
aerial imagery that is only freely available in the United States (with 1 m/px spatial resolution) and dense labels 
that are expensive to collect. This work shows that solar farm detection is feasible with lower resolution (10 m) 
imagery that is freely available worldwide and low-cost point. Other studies use geospatial variables including 
population demographics, housing characteristics to determine the variables that are predictive of photovoltaic 
(PV) energy adoption10. Concurrently to our work, Dunnett et al. published a global dataset for windmill and 
solar farm locations30 relying on the solar farms/windmills being previously present in OpenStreetMap (OSM). 
Unfortunately, the methods that rely on surveys, OSM, and surrogate predictive variables are limited in complete-
ness and scale. For example, Dunnett et al. includes 328 valid solar PV installations across India, our approach, 
on the other hand, is able to detect 1363 solar farms including 1035 never mapped before on OSM. Also, con-
currently to our work, Kruitwagen et al. published a global inventory of solar installations using satellite imagery 
predictions13. This study included 372 solar PV installations across India, while missing many installations.

Six years ago, the international community finalized the Paris Agreement—an historic international climate 
change agreement—that included new commitments from all countries and outlined a set of rules for the global 
system over the coming years. The agreement sets out a system to track the progress of countries towards their 
targets—including principles defining “transparency and accountability” provisions. The dataset we have devel-
oped for India if expanded to other countries could be a simple and transparent mechanism to track progress 
on the deployment of solar energy that can help hold countries accountable to deliver on their climate targets.

Land-use and land-cover change is a pervasive, accelerating, and impactful process. Land-use and land-cover 
change is driven by human actions, and, in many cases, it also drives changes that impact humans. Understanding 
these patterns is critical for formulating effective environmental policies and management strategies. Because our 
dataset allows for both the identification of the spatial location of new solar development as well as the timing of 
that development, the dataset can be used in conjunction with land-use change models to better understand pat-
terns of future change. Given the large land footprint associated with solar and onshore wind energy development 
there is potential for renewable energy expansion to involve the clearing of natural lands or fragmenting wildlife 
habitat and converting fertile agriculture land8. Our analysis of past land use change driven by solar development 
in India indicates almost 7% of development occurred within habitats important both for biodiversity and carbon 
storage i.e. evergreen, deciduous, and littoral swamp forest. In the face of climate change, which is likely to interact 
strongly with other stressors, biodiversity conservation and agriculture food security requires proactive adapta-
tion strategies31. Renewable energy’s potential benefits to biodiversity from climate change mitigation will only be 
realized if development can prevent impacts to remaining natural habitat. Maintaining intact natural habitats and 
maintaining or improving the connectivity of land for the movement of both individuals and ecological processes, 
may provide the best opportunity for species and ecological systems to adapt to changing climate32.

On the other hand, the increasing demand for implementing renewable energy projects could put arable 
agriculture land under pressure7. Globally fertile arable land suitable for agriculture is limited owing to natu-
ral conditions and nature protection, and is threatened by processes like urbanization, demographic shift, and 
climate change33. Further, overtime the demand for land to implement renewable energy projects expected to 
impact productive agriculture lands. Therefore, the loss of productive agriculture land may lead to new dimen-
sions of land use conflicts and provoke economic, ecological, political, and social conflict disruptions, and may 
encourage food-versus-energy controversy. Given that we observed that nearly two thirds of solar development 
was located in agricultural areas, avoiding conversion to productive agricultural land will be an important strat-
egy for renewable energy deployment. Thus, guiding renewable energy development toward areas with lower 
conflict will be important. Understanding the factors associated with renewable energy development and pre-
dicting future expansion patterns will allow to proactively identify potential conflicts between renewable energy 
and other important land uses. The first step in this process is having access to data on the locations of solar 
installations that can be regularly updated.

Code availability
The dataset will be made publicly available for researchers, conservationist, policy makers, and solar developers 
to further explore conservation and solar energy development relationships, help inform policy decisions and 
minimize solar development effects in ecosystems at: https://researchlabwuopendata.blob.core.windows.net/
solar-farms/solar_farms_india_2021.geojson.

Source code with our model architecture implementation, trained models accompany with instructions on 
how to use it is available on GitHub at: https://github.com/microsoft/solar-farms-mapping for anyone to use 
under MIT open-source license.
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